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Summary. Primitive coronoids of hexagonal symmetry (D6h or C6h ) are referred to as "waffles". Some 
theorems about unbranched catacondensed benzenoids are presented and used to derive a general 
combinatorial formula for the number of Kekul~ structures (K) for waffles. The symmetry-adapted 
method of fragmentation is employed. Several K formulas for special classes of waffles are also 
reported. 
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Die Anzahl yon Kekul~-Strukturen fiir einige aromatische Coronoid-Kohlenwasserstoffe: 
,,Waffel-Strukturen" 

Zusammenfassung. Einfache Coronoide von hexagonaler Symmetrie (D6h oder C6h ) werden als ,,Waf- 
fel" bezeichnet. Einige Theoreme beziiglich unverzweigter catakondensierter Benzenoide werden an- 
gegeben und zur Ableitung einer generellen Formel fiir die Anzahl von Kekul6-Strukturen (K) ftir 
,,Waffel" benutzt. Es wird die symmetrie-adaptierte Methode zur Fragmentierung angewendet. 
Aul3erdem werden einige K-Formeln fiir spezielle Klassen von ,,Waffeln" angegeben. 

Introduction 

A number of works on the topological properties of coronoids (for a definition, 
see below) have appeared during the last years. The recent work on circumkekulene 
homologs [1] may be consulted for references to previous works, and especially 
also for the relevance of these studies to organic chemistry. A new class of polycyclic 
aromatic hydrocarbons, which corresponds to coronoids, has been termed cyclo- 
arenes [2]. 

Several works have appeared on the enumeration of Kekul6 structures for 
coronoids [1, 3-8], but there are still many problems to be solved in this area. In 
the present work we give a complete solution for the number of Kekulb structures 
(K) of primitive coronoids with hexagonal symmetry. 

A coronoid [9] is a planar system of identical regular hexagons (like a benzenoid 
[10]), but not simply connected; it has a hole of a size of at least two hexagons. 
(Only single coronoids with exactly one hole are considered here.) Primitive co- 
ronoids, being the catacondensed unbranched systems, are the simplest ones among 
the coronoids. They consist of a single (circular) chain of hexagons. These hexagons 
occur only in two modes, linearly and angularly annelated (L and A, respectively). 
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Table 1. Numbers of primitive coronoids with 
hexagonal symmetry 

h D6h C6h 

12 1 0 
18 2 0 
24 2 1 
30 5 2 
36 5 8 
42 12 19 
48 13 55 
54 31 138 
60 33 373 
66 80 957 

The number of linear segments in a primitive coronoid is equal to the number 
of the A-mode hexagons. A segment is by definition the linear chain from an 
A-hexagon to the next A-hexagon, both A-hexagons inclusive. 

The only combinatorial K formulas for primitive coronoids of hexagonal sym- 
metry (D6h and C6h ) SO far available [3-5] concern the classes of systems with 
equidistant segments. Kekulene [2] is an example. 

Another aspect of the studies ofcoronoids (and benzenoids) is their enumeration 
for given numbers of hexagons (h) and identification of the forms. This task is 
usually performed with the aid of computer programming. Primitive coronoids in 
general (regardless of symmetry) have been enumerated in this way for h values 
up to 20; see [11] and references cited therein. This does not help much for an 
effective study of the subsystems with hexagonal symmetry; among the totality of 
10 527 nonisomorphic systems (h ~< 20) there are only 3 with hexagonal symmetry. 
Fortunately the means for specific generations of coronoids with hexagonal sym- 
metry are available. The systems have been enumerated up to h = 42 [7]; notice 
that the h values for these systems (evidently) can only be multiples of 6. Table 1 
shows the numbers of nonisomorphic primitve coronoids with hexagonal symmetry 
for h ~< 66. The actual forms for h ~< 36 are shown elsewhere [7]. 

For the sake of brevity we shall refer to primitive (single) coronoids of hexagonal 
symmetry as "waffles". 

Results and Discussion 

Introductory Remarks 

The numbers of Kekul6 structures, K, were found numerically in connection with 
the computer-generation of the waffles. A re-appearance of certain numbers was 
observed as a striking property. As an example among D6h systems we show five 
waffles with the same K number; see Fig. 1. This feature is immediately understood 
for the two bot tom systems, which are said to be isoarithmic [12]. Two isoarithmic 
waffles have the same sequence of segments, which only are kinked in different 
ways. It is known that this does not affect the number of Kekul6 structures. In 
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16 8 

h = 36  1 Fig. 1. Five waffles which all have 
K= 17172740. Only the two bot- 
tom systems are isoarithmic 

our example (Fig. 1) the two isoarithmic waffles have both the segments of the 
lengths 2, 2, 2, 2, 3 (in terms of the number of hexagons) in the given order and 
repeated six times. We symbolize this sequence by/2,2,2,2,3/6 o r / 2  4 , 3 /6  . However, 
Fig. 1 shows forms of different shapes and sizes with the same K, but not (genuinely) 
isoarithmic. One may speak about accidental isoarithmicity. This puzzling phe- 
nomenon was explained in the present work, as is reported in the subsequent 
sections. 

Combinatorial K Formulas for Some Special Classes of Waffles 

In Fig. 2 some classes of waffles are defined. Only the portions between two 
symmetrically equivalent, angularly annelated, hexagons are drawn. 

Let the number of hexagons be 

h = 6 q ;  q =  1 , 2 , 3 , . . . .  (1) 

Here ~ = 1 corresponds to a degenerate case represented by coronene, which is a 
pericondensed benzenoid rather than a primitive coronoid. 
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(i) a 

(iv) 
3' 

( i i )  O. 

• ~ ~ .  (iii) 

(v) 

Fig. 2. Classes of waffles. The bracketed systems are isoarithmic 

The systems of  Fig. 2 were analyzed by the symmetry-adapted method  of  
f ragmentat ion [ 1, 7, 8, 13], which led to the following combinator ial  formulas for 
the K numbers:  

(i) K =  (a2+ 1)2(a2 + 4); a = ~ / ;  I / =  1 ,2 ,3 , . . .  , (2) 

where a = 1 corresponds to the degenerate case of  coronene ( K =  20). Eq. (2) is 
consistent with the previous findings [3-5],  while the subsequent  results are new. 

(ii) K =  4(4a2 + 1)2(a2 + 1); a = q  - 1; r / =  2 , 3 , 4 , . . .  , (3) 

where the system degenerates to kekulene (K = 200) for a = 1. 

(iii) K = ( f l 4 +  1)2( / ]4+4) ;  f l = l ( r / +  1); r /=  1 , 3 , 5 , . . . ,  (4) 

where the system with fl = 1 is the degenerate case of coronene. 

(iv) K = 5 ( 2 5 ) ,  2 +  1 0 7 + 2 ) 2 ( 5 )  , 2 + 2 ) , +  1); ) , = 1 1 - 3 ;  1 / / = 3 , 4 , 5 , . . . ,  (5) 

where the cases of  y = 0 (K = 20) and ), = 1 (K--- 54 760) are degenerate. 

(v) K =  4(264 + 463 - 26  + 1)2(464 + 863 - 46  + 5); 

1 
6 = ~ ( r / -  1); r /=  1 , 3 , 5 , . . . ,  (6) 

where 6 = 0 (K = 20) and 6 = 1 (K = 1 300) are degenerate cases. 

Generalization o f  the Combinatorial  Formulas  

A closer inspection of Eqs. (2)-(6) revealed that  they may all be adapted to the 
general form 

K = (x 2 + 1)2(X 2 + 4) = X 6 -t" 6X 4 -t- 9X 2 -{- 4. (7) 
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In the five cases one has specifically: 

x = a ,  (8) 

x = 2 a ,  (9) 

x =/~2, (10) 

x = 5 7 +  1, (11) 

x = 2 6 2 + 2 6 -  1. (12) 

This feature explains the occurrence of  accidental degeneracy (see above). But 
Eq. (7) is more  powerful  than  that. In the following we shall prove that  any waffle 
has a K number  which fits the form (7) with integer x. The possible values are 
x = 1,2, 3 , . . .  when coronene (x = 1) is included. 

In order  to achieve this goal, which amounts  to the derivation of a suitable 
form of  a general formula  for the K number  of  a waffle, we shall need some auxiliary 
results for unbranched  catacondensed benzenoids (single chains). 

Some Theorems for Single Chains 

Assume a single (unbranched) chain, U, with N linear segments. The segments are 
defined (as in the coronoids)  so that  they share A-mode hexagons. 

Define u0 by deleting both  end hexagons,  u~ and u2 by deleting one end hexagon 
and one end segment in the two ways, and finally u3 by deleting the two end 
segments. 

Let the K numbers  be denoted by U =  K{U} and ui = K{ui} ( i=  0, 1,2,3). 
The definition is applicable to all cases with N > 1 if we allow for the deleting 

of  all hexagons, in which case K = 1. 

Theorem 1. 

U = H 0 -~- b/1 n t- b/2 -t- b/3 . (13) 

This relation is a s traightforward result f rom the well-known method  of  frag- 
menta t ion  [14] for deducing K numbers.  

Number o f  

segments 

K number 

U 

u 0 

u 1 

u 2 

u 3 

; / = 2  N = 3  

n +  1 mn + 1 krnn - k n  + k + n 

n - ] - (m + n) + 2 + 2(k + n) + rn 3 

1 r n - I  l < m - k - r n +  2 

1 n -  I r a n - m - n + 2  

0 1 m - I  

Fig. 3. K numbers for the single chains of one, two and three segments and their fragments with 
relevance to the stated theorems 
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Theorem 2. 

u~ u; = ( _ I ) N .  (14) 

Proof In order to prove this theorem we start with N = 2 and N = 3. Combinatorial 
K formulas for such systems are well known [12, 15-17]; they are listed in Fig. 3 
for all the systems which are involved in the theorems. By elementary computations 
both theorems are easily verified for these N values. In particular, when expanding 
Eq. (14), we find that all parameters (k, rn, n) vanish, and the result becomes + 1 
for N = 2 and - 1 for N = 3. Figure 3 includes the pertinent quantities for N--  1, 
which involve degenerate cases and are defined so that they fit into the system. 

The rest of this proof  is conducted by complete induction. Assume that Theorem 
2 holds for a single chain U with N segments. The upper part of Fig. 4 gives an 
illustration of u0, u~, u2 and u3 supplied by K values. The indicated systems are the 

%g 

Fig. 4. Illustration to the Proof of Theorem 2 
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unhatched parts of the drawings. Let the system U be augmented by one segment 
of ~ + 1 hexagons as indicated in Fig. 4, and denote the new system of N + 1 
segments by V. One has for the corresponding fragments: 

Vo = Uo + (15)  

vl = Uo, (16) 

v2 = ~ u2 + u3, (17) 

v3 = u2. (18)  

The relations (15) and (17) were obtained by the method of fragmentation [14]. 
From (15)-(18) one obtains readily 

V 0 V 3 - -  V 1 1) 2 : b/1 H 2 - -  /,/0/,/3, (19) 

where the quantity ~ has cancelled out. Hence 

vo _ - _  : ( - - l )  N + I  (20) 
V 2 1) 3 b/2 H 3 

which completes the proof. 

Theorem 2 seems to be an interesting result in itself, not only for the subsequent 
application to waffles. We give one more theorem for the quantities considered. 

Let U' be a single chain consisting of a cyclic permutation of the segments of 
the single chain U. Define the matrices 

U = [b/0/,/2 u3Ul] , U, = IUOu2 uUil ' (21) 

where the elements are the K numbers of the fragments according to the above 
definitions. Then the trace and determinant of the matrix is invariant with respect 
to the permutation: 

Theorem 3. 

Tr (U') = Tr (U), det (U') = det (U). (22) 

Proof. In order to prove this theorem assume that U is given in terms of segments 
by/So, Sl , . . . ,  so)/, while U' is/Sl, s2, . . . ,  s~, So/. If s0 = ~ + 1 as the number of hexagons 
in this particular segment, then 

Uo = ~ u'l + u;,  (23) 

U; = ~ 12 2 -~- U3,  (24) 

u~ = u2. (25) 

These relations were deduced in the same way as under the proof of Theorem 2. 
On eliminating u2 from (23)-(25) also ~ vanishes, and one obtains 

u0 + u3 = u0 + u;, (26) 

which is equivalent to the first part of (22). 
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The second part of (22) is obvious since both sides of the sign of equality, in 
accord with Theorem 2, are equal to ( -  1) ~v, where N is the same number. 

This completes the proof of Theorem 3. 

General Combinatorial K Formula for Waffles 

Consider a waffle, W, and select six angularly annelated (A) hexagons which are 
symmetrically equivalent and may be generated by rotations of 60 ° . The symmetry- 
adapted method of fragmentation (see above) is to be applied to the free edges of 
the A hexagons, i.e. the edges between vertices of second degree. Since there a r e  
no restrictions on the possibilities for single and double bonds associated with these 
edges we must take thirteen bonding schemes into account (rather than five [1, 7, 
8, 13]); cf. Fig. 5. Let U be the single chain between two neighbouring A hexagons 
inclusive, and define u0, u~, u2 and u3 as the Knumbers of the fragments as explained 
in the preceding section. The contributions to the number of Kekul6 structures (K) 
of W from the different bonding schemes were computed with the following result: 

ko = u 6 + u 6 , (27) 

k 1 = (u  4 q- u 4) u 1 u 2 ,  (28) 

k2 = u0 ul u2 u3 (u 2 + u2), (29) 

k 3 = k 4 = (Uo 2 + u3 2) (u  I u2) 2 , (30) 

ks = (Uo U3) 2 Ul U2, (31) 

k6 = (Ul u2) 3 + l ,  (32) 

k 7 = u 0 u 3 (u  1 U2) 2 • (33) 

Taking into account the multiplicity for each bonding scheme (cf. Fig. 5) the total 
K number is found as 

K = k0 + 6kl + 6k2 + 6k3 + 3k4 + 6k5 + 2k6 + 12k7. (34) 

OA 1 A 2A 3A 4A 

II 1 II I[ 6 [ I[ 6 IJ II 6 [1 [ 3 [ 

OB 1B 2B 3B 4B 

1 I I 6 II I B I I 6 I II 3 

5 6 7 

] 6 II I 2 I[ I 12 / 

Fig. 5. The thirteen bonding schemes of the symmetry-adapted method of fragmentation. Multiplicities 
are indicated 
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u u* 

Fig. 6. The single chain between two symmetrically equiv- 
alent A hexagons for the bottom-right waffle of Fig. 1, 
chosen in two different ways 

On inserting the expressions (27)-(33) into (34) it was attained at 

K =  u 6 + u 6 + 6 (u  4 + u 3u3 + u 2u~ + UoU~ + u 4)ulu2 

+ 3 (3 u02 + 4 u0 u3 + 3 u 2) (ul u2) 2 + 2 (Ul u2) 3 + 2. (35) 

As an example, consider the bottom-right waffle of  Fig. 1. Figure 6 shows two 
different choices of  the single chain between A hexagons, viz. U and U*. The 
corresponding K numbers of  fragments are u0 = 12, ul = u2 = 7, u3 = 4 and u0 = 13, 
ul = 5, u2 = 8, u3 = 3, respectively. Each set, when inserted into (35), yields 
K = 17172740. 

The number  of  segments in W is obviously a multiple of  six. Therefore the 
number  of  segments in U as defined in this section must be odd, and by virtue of 
Theorem 2 one has 

Ul u2 = u0 u3 + 1. (36) 

With the aid of  this substitution Eq. (35) was reduced to the following form by 
elementary computations,  

K =  (u0 + u3) 6 + 6(u0 + u3) 4 + 9(u0 + u3) 2 + 4. (37) 

A cyclic permutat ion of the segments in U should not  affect the K number  of  
W. The fact that u0 + u3 is invariant with respect to such permutations is actually 
expressed by Theorem 3. Figure 6 shows an example of  two single chains, U and 
U*, which only differ by a cyclic permutat ion of  the segments. In accord with the 
theory one has u0 + u3 = u0 + u3 = 16. On inserting u0 + u3 = 16 into Eq. (37) one 
obtains again K = 17172740. 

On comparing Eq. (37) with (7) it is proved that the general form (7) always 
is sound, and the integer x is identified by 

x = Uo + u3. (38) 

Sys t ema t i c  Special  Combinatorial  K Formulas  f o r  Waf f les  

Here we outline a systematic approach to the K formulas for classes of  waffles. 
Equations (2) and (8) apply to the class of  waffles with one segment of a + 1 

hexagons in U. A member  of  this class is to be des ignated/a  + 1/6. 
Correspondingly /a  + 1, b + 1, c + 1/6 symbolizes a waffle with three segments 

in U. For  this class it was derived, as a special case of  (38): 

x = abe + a + b + c.  (39) 

In the two examples of  members of  this class which are found in Fig. 1, the 
parameters are a = c = 1, b = 7 and a -- c = 3, b = 1, respectively. In both cases 
x = 16, leading to the correct K number  when inserted into (7). 

An extension to five segments in U, viz . /a  + 1, b + 1, c + 1, d + 1, e + 1/6, yields 

x = abode + abc + b c d +  cde + dea + e a b  + a + b + c + d +  e .  (40) 



252 Enumeration of Kekul6 Structures 

The K number  o f  the two (isoarithmic) representatives o f  this class in Fig. 1 is 
correctly reproduced by inserting a = b = d = e = 1, c -- 2, which again gives x = 16. 

In this systematic approach  a definite pa t tern  o f  the expressions for x is rec- 
ognized. 

Conclusion 

The problem of  Kekul6 structure counts  for primitive coronoids  with hexagonal  
symmet ry  ("waff les")  is considered as completely solved in the present work.  A 
corresponding analysis o f  primitive coronoids  with tr igonal  symmet ry  is in progress. 
In this connect ion  it is relevant to ment ion  the extensive a t tempts  to synthesize the 
next-smallest  primitive coronoid  or cycloarene [ 18], which has h = 9 and tr igonal  
symmetry .  
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